25 resultados para Pregnancy

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pregnancy-associated glycoproteins (PAGs) are structurally related to the pepsins, thought to be restricted to the hooved (ungulate) mammals and characterized by being expressed specifically in the outer epithelial cell layer (chorion/trophectoderm) of the placenta. At least some PAGs are catalytically inactive as proteinases, although each appears to possess a cleft capable of binding peptides. By cloning expressed genes from ovine and bovine placental cDNA libraries, by Southern genomic blotting, by screening genomic libraries, and by using PCR to amplify portions of PAG genes from genomic DNA, we estimate that cattle, sheep, and most probably all ruminant Artiodactyla possess many, possibly 100 or more, PAG genes, many of which are placentally expressed. The PAGs are highly diverse in sequence, with regions of hypervariability confined largely to surface-exposed loops. Nonsynonymous (replacement) mutations in the regions of the genes coding for these hypervariable loop segments have accumulated at a higher rate than synonymous (silent) mutations. Construction of distance phylograms, based on comparisons of PAG and related aspartic proteinase amino acid sequences, suggests that much diversification of the PAG genes occurred after the divergence of the Artiodactyla and Perissodactyla, but that at least one gene is represented outside the hooved species. The results also suggest that positive selection of duplicated genes has acted to provide considerable functional diversity among the PAGs, whose presence at the interface between the placenta and endometrium and in the maternal circulation indicates involvement in fetal–maternal interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full term pregnancy early in life is the most effective natural protection against breast cancer in women. Rats treated with chemical carcinogen are similarly protected by a previous pregnancy from mammary carcinogenesis. Proliferation and differentiation of the mammary gland does not explain this phenomenon, as shown by the relative ineffectiveness of perphenazine, a potent mitogenic and differentiating agent. Here, we show that short term treatment of nulliparous rats with pregnancy levels of estradiol 17β and progesterone has high efficacy in protecting them from chemical carcinogen induced mammary cancers. Because the mammary gland is exposed to the highest physiological concentrations of estradiol and progesterone during full term pregnancy, it is these elevated levels of hormones that likely induce protection from mammary cancer. Thus, it appears possible to mimic the protective effects of pregnancy against breast cancer in nulliparous rats by short term specific hormonal intervention.